Geology Through Literature: Dragon Teeth
Dragon Teeth had come across my radar for my work through
AiPT Comics. I had initially done a
joint review for the book with fellow reviewer and fellow dinosaur fanboy, Robert Reed.
Dragon Teeth is the latest book that has come out by
Jurassic Park author Michael Crichton. However, Crichton has been dead for some time before the publication of this book so it is unknown how much reworking and polishing was needed by other people before the book had been put to print.
Dragon Teeth takes place during the tumultuous times in early paleontology during a period termed the "Bone Wars". When giants in the field Othniel C. Marsh and Edward Drinker Cope, would have their minions literally battling it out over fossils or destroying scientifically irreplaceable specimens in the goal to prevent the other from obtaining them. It is during this time period that we have
Dragon Teeth taking place, an entirely fictional novel, although presented as if it were a historical reenactment.
Dragon Teeth takes place in 1876 and follows a rich, but lazy, student William Johnson, at Yale University who ends up with a bet that he would never be able to survive a trip to the west. In response to the bet, Johnson declares that he was already involved with the expedition west led by Marsh, a professor at Yale. Despite his boast, Johnson had nothing to do with the expedition but he managed to weasel his way in by saying he was a photographer. After months of training to actually be a photographer, the expedition sets off for the west, without the participants having any real idea as to where they were going.
There are quite a few instances of paleontology and geology that are mentioned throughout the novel, however there are not as many as you would expect given the subject. I found that reading The Life of a Fossil Hunter in conjunction with Dragon Teeth gave me a much better understanding for both books, the real life adventure and the fictional one based on real events. Here are a few of the geological and paleontological mentions that I would like to highlight and discuss.
Part 1: Second Chapter - Marsh (there are no chapter numbers)
"Marsh led him back into the interior of the museum. The air was chalky and shafts of sunlight pierced it like a cathedral. In a vast cavernous space, Johnson saw men in white lab coats bent over great slabs of rock, chipping bones free with small chisels. They worked carefully, he saw, and used small brushes to clean their work. In the far corner, a gigantic skeleton was being assembled, the framework of bones rising to the ceiling.
"Giganthopus marshiensis, my crowning achievement," Marsh said, nodding toward the looming beast of bones. 'To date, that is. Discovered her in '74, in the Wyoming Territory. I always think of her as her.'"
From what I can tell, there is no dinosaur with the genus
Giganthopus, nor has there ever been. This appears to be an MO with Crichton, which is to mix seemingly plausible scientific names with actual scientific names. The reason for the mixed occurrences is unknown to me. However, since there is enough material in the text to speculate what Crichton
could mean, let us do that. He says that the dinosaur in question was discovered in the Wyoming Territory in 1874, which at that time the boundaries were identical to the finalized state of Wyoming. Knowing how quickly Marsh was able to turn around a fossil from discovery to naming of the dinosaur, this means that the dinosaur could have been one that Marsh named in 1874, 1875, or 1876. Even though the story takes place in 1876, we could fudge that 1876 date a bit.
Within the text we know that the dinosaur Marsh is referring to was big, a "
looming beast of bones". We also know that it had enough of a skeleton that it could be reconstructed. This leaves us with a few dinosaurs that Marsh had discovered including
Allosaurus, which was named by Marsh in 1877 and discovered in central Colorado. However, there were not many bones from the initial discovery of
Allosaurus to piece together a "looming beast". The
Apatosaurus was named in 1877 and discovered in Colorado, however it was based on a nearly complete specimen.
Diplodocus was found and named shortly after this in 1877, also found in Colorado. And one more potential dinosaur, although I wouldn't consider it "looming", was
Stegosaurus, named in 1877 and found, again, in Colorado. So even though all of these are named after the text, it is logical that the papers could have been in the works. The biggest glaring error with these was that Marsh would clearly have known the difference between Colorado and Wyoming, which all of his major dinosaur finds at the time were coming out of.
Part 1: Sixth Chapter - Chicago
"Then, too, Chicago reporters never tired of repeating the story of Marsh's earliest public exploit, the affair of the Cardiff giant.
In 1869, the fossilized skeleton of a ten-foot giant was unearthed in Cardiff, New York, and quickly became a national phenomenon. It was generally agreed that the giant was one of a race of men who had been drowned in Noah's flood; Gordon Bennett of the New York Herald and a number of scholars had pronounced it genuine.
Marsh, in his capacity as the new paleontology professor from Yale, went to view the fossil and said, within earshot of a reporter, 'Very remarkable.'
'May I quote you?' said the reporter.
'Yes,' said Marsh. 'You may quote me as saying, 'A very remarkable fake.'
It was later determined that the so-called giant originated as a block of gypsum, carved secretly in Chicago."
Unlike the encounter previously mentioned, this one actually did occur, and nearly identical to how it is presented here. From
History.com, the Cardiff giant was a phenomenal hoax of the time. In an attempt to discredit a preacher, George Hull came up with the idea of creating a "petrified man" by carving one out of gypsum and burying him.
The gypsum came from Fort Dodge, Iowa. The gypsum in question was from the Jurassic, Fort Dodge Formation. Gypsum is an evaporate mineral, formed in much the same way as salt deposits form, except in water that has a high sulfur content. Gypsum is white to grey in color and is extremely soft, being able to be scratched by a fingernail. So, although it would would be quick and easy to make a statue out of, the statue itself would not last long, especially buried in the wet soil of upstate New York. Many people noticed this and questioned the statues legitimacy.
And it was indeed Marsh, who upon seeing the statue said that it was “of very recent origin, and a most decided humbug.”
Part 2: Eighteenth Chapter - Bone Country
The following series of entries is actually one continuous passage that presents a pretty accurate look at the early history of the science of paleontology.
"In 1876, scientific acceptance of dinosaurs was still fairly recent; at the turn of the century, men did not suspect the existence of these great reptiles at all, although the evidence was there to see.
Back in July 1806, William Clark, of the Lewis and Clark Expedition, explored the south bank of the Yellowstone River, in what would later become Montana Territory, and found a fossil 'semented [sic] within the face of the rock.' He described it as a bone three inches in circumference and three feet in length, and considered it the rib of a fish, although it was probably a dinosaur bone."
Northeast of Billings, Montana lies a promontory of sandstone along the Yellowstone River known as Pompey's Pillar, now designated a National Monument. It was near here that Clark truly did find a fossil within the face of a rock on July 25th, 1806. His description of the find went almost identical to Crichton's recount:
“…I employed myself in getting pieces of the rib of a fish which was cemented within the face of the rock. This rib is about 3 inches in circumference about the middle. It is 3 feet in length though part of the end appears to have been broken off. I have several pieces of this rib. The bone is neither decayed nor petrified but very rotten.”
Although he thought it was a fish rib, paleontologists now suspect a dinosaur bone, perhaps a
Hadrosaurus,
Triceratops, or
Tyrannosaurus, all of which have been found in the nearby sediment.
"More dinosaur bones were found in Connecticut in 1818; they were believed to be the remains of human beings..."
What is generally assumed to be the first discovery and collection of dinosaur bones in North America was in Connecticut in 1818. Fossilized bone fragments were found within Late Triassic red sandstones while blasting a well near Ketch's Mills in East Winsor. The bones were discovered by Solomon Elsworth Jr. who gave them to some professors at the Medical Institute of Yale University. The professors thought that the bones might be human remains, however they couldn't be certain. Later studies and descriptions of the bones allowed them to be named a new species of prosauropod,
Anchisaurus colurus (Lull, 1912), which was later renamed
Anchisaurus polyzelus (Galton, 1976).
"...dinosaur footprints, discovered in the same region, were described as the tracks of 'Noah's raven.'"
I had broken down the Noah's raven tracks previously as part of my
DINOS! From Cultural to Pop Culture series. In short, the story goes back to 1802, when a young boy named Pliny Moody, was farming his fields in South Hadley, Massachusetts. While he was plowing, he unearthed a rock slab with a bunch of weird markings across it. He took the slab home and set it as a doorstep, because that's apparently what you did with these things back then (
Nash Dinosaur Track Site). In 1810, the house, along with the rock, was sold to Dr. Elihu Dwight, who lived there for 30 years. During this time, the markings on the rocks were "identified" as the tracks of "Noah's Ravens". The term "Noah's Ravens" refers to the birds that were sent by Noah to find dry land during the flood. The raven never returned to the ark and it was thought that these footprints represented the location where the raven touched down onto Earth following the floods. These tracks were later seen by famed ichnologist Edward Hitchcock, who identified them as bird tracks. Later scientists came back to the tracks and realized that they were really dinosaur tracks.
"The true meaning of these fossils was first recognized in England. In 1824, an eccentric English clergyman named Buckland described 'the Megalosaurus or Great Fossil Lizard of Stonesfield.' Buckland imagined the fossil creature to be more than forty feet long, 'and with a bulk equal to that of an elephant seven feet high.' But this remarkable lizard was considered an isolated specimen."
In 1824, William Buckland was the first person to describe and validly name a dinosaur species (although it wasn't known as a "Dinosaur" at the time). The paper in which Buckland described the specimen was titled "
Notice on the Megalosaurus or Great Fossil Lizard of Stonesfield". His identification and descriptions were based on the lower jaw, some teeth, some vertebrae, pieces of ribs, and some other bones. Based on these pieces of evidence Buckland said that Cuvier placed animals with these sized bones to be as big as 40 feet in length and weigh as much as an elephant seven feet high. Buckland seemed hesitant to place those exact dimensions on this animal but he did accede that this animal had to have been larger than any currently living animal.
"The following year, Gideon Mantell, an English physician, described 'Iguanodon, a newly-discovered Fossil Reptile.' Mantell's description was based largely on some teeth found in an English quarry. Originally the teeth were sent to Baron Cuvier, the greatest anatomist of his day; he pronounced them the incisors of a rhinoceros. Dissatisfied, Mantell remained convinced that 'I had discovered the teeth of an unknown herbivorous reptile,' and eventually demonstrated that the teeth resembled those of an iguana, an American lizard."
In 1822, Mary Ann Mantell stumbled upon a tooth unlike anything they had ever seen before. She presented the tooth to her husband, Gideon, a physician who had an interest in fossils. Gideon was able to trace the tooth back to its source and discovered several other teeth as well as some other bones. Not only did he send the bones to Cuvier as described above but he also sent them to the aforementioned William Buckland. Cuvier suggested it was a rhinoceros and Buckland said is was from a large fish and advised not to pursue it any more. Dr. Mantell would not be dissuaded and upon visiting the Royal College of Surgeons in London he was shown a specimen of an iguana, brought back from the West Indies by Darwin. Looking at the teeth, Dr. Mantell noticed the extreme similarity between the two, except his was much, much larger, and identified the tooth as belonging to a giant extinct reptile. He eventually published on the specimen in 1825 in a journal article entitled "
Notice on the Iguanodon, a newly discovered fossil reptile, from the sandstone of Tilgate Forest, in Sussex".
"Baron Cuvier admitted his error, and wondered: 'Do we not have here a new animal, an herbivorous reptile ... of another time?' Other fossil reptiles were unearthed in rapid succession: Hylaeosaurus in 1832; Macrodontophion in 1834; Thecodontosaurus and Paleosaurus in 1836; Plateosaurus in 1837. With each new discovery came the growing suspicion that the bones represented a whole group of reptiles that had since vanished from the earth."
Gideon Mantell went on from his initial publication on
Iguanodon to discover and describe several others of the initial dinosaur publications including
Hylaeosaurus (1832) and
Peleosaurus (1850). Mantell acquired a series of bones from a gunpowder explosion at a mine in West Sussex in 1832. The bones, Mantell realized, could be reassembled to form a partial skeleton. After being advised that this wasn't just another example of his previous find,
Iguanodon, he decided to publish his find under the name
Hylaeosaurus, which became the first named and identified anklyosaur.
Macrodontophion is a dubious animal since it was initially described by A. Zborzewski from a single "tooth" from the "Jurassic redbeds" of southern Russia. However both the age of the fossil and the identification of it as a tooth have been called into question.
Thecodontosaurus was initially discovered in 1834 in one of Bristol's limestone quarries. The initial discovery of the bones led to a race between two groups of researchers with Samuel Stutchbury and Henry Riley coming out on top describing and naming what will eventually be identified as an early sauropodomorph. Although not officially published on until 1840, an abstract for a talk with the name and short description of the fossils in 1836 was enough to solidify that date as the fourth named dinosaur specimen.
Paleosaurus was also named in the same abstract as
Thecodontosaurus by Riley and Stutchbury based on two fossil teeth. Neither
Thecodontosaurus or
Paleosaurus were identified as part of Dinosauria, when "Dinosauria" was officially named, because they were dubious specimens at the time. It wasn't until several years later they were reevaluated and found to truly represent dinosaurs.
Plateosaurus was initially found in Heroldsberg, Germany by physician Johann Friedrich Engelhardt in 1834. The discovery, which consisted of some vertebrae and leg bones was eventually described and named by paleontologist Hermann von Mayer in 1837. Although not thought of as a dinosaur at the time due to the scant remains that initially identified it,
Plateosaurus has since become one of the most abundant dinosaur discoveries in history with well over 100 known skeletons.
"Finally, in 1841, another physician and anatomist, Richard Owen, proposed the entire group be called Dinosauria, or 'terrible lizards.'"
Even though there were many potential "dinosaur" discoveries up until this point, many of them were not recognized as being dinosaurs until reevaluations much later. It is for that reason that Sir Richard Owen only used three particular species to identify his new characterization of "Dinosauria". As I go into
more detail here, in 1841, Owen identified common characterizations that
Megalosaurus, Iguanodon, and
Hylaeosaurus contained. Mainly that they had columnar legs instead of the sprawling gait of crocodilians, and vertebrae fused to the pelvis. It was from these characterizations that he gave the following comments in a talk, which were later published,
"The combination of such characters, some as the sacral ones, altogether peculiar among reptiles, others borrowed, as it were, from groups now distinct from each other, and all manifested by creatures far surpassing in size the largest of existing reptiles, will, it is presumed, be deemed sufficient ground for establishing a distinct tribe or suborder of saurian reptiles, for which I would propose the name of Dinosauria."
And the continuous passage ends with the following:
"The notion became so widely accepted that in 1854, full-sized reconstructions of dinosaurs were built in Crystal Palace in Sydenham, and attained wide popularity with the public."
There is a place called the Crystal Palace located in Sydenham Hill that was constructed over a period of time from 1853 to 1855. The Crystal Palace is still around today and remains largely as it was when the park opened in 1854. For the dinosaurs, sculptor Benjamin Waterhouse Hawkins, examined the fossils and conferred with Richard Owen, predominant paleontologist, to present the most accurate reconstruction of dinosaurs at the time.
With that history of paleontology laid out, the text continues on with the story. The next paleontological point of interest comes up later in the same chapter.
"But the rock was fragile, and breaks in the fossils did occur, even with the most careful handling. Most frustrating of all was a break days or weeks after the fossil was lowered to the ground.
It was Sternberg who first proposed a solution.
When they set out from Fort Benton, they had brought with them several hundred pounds of rice. As the days went on, it became clear that they would never eat all the rice ('at least not the way Stinky cooks it,' Isaac grumbled). Rather than leave it behind, Sternberg boiled the rice to a gelatinous paste, which he poured over the fossils. This novel preservative technique left the fossils looking like snowy blocks-or, as he put it, 'gigantic cookies.'
But whatever they called it, the paste provided a protective covering. They had no further breaks."
This is one of the hallmarks of dinosaur excavation today, wrapping the fossils to protect them from damage, while trying to remove them from the rock, or remove the rock all together with the fossils embedded inside the blocks. The process is known as making a fossil field jacket and involves using burlap and plaster of Paris, along with other materials to stabilize the fossils such as pieces of wood and tissue paper or aluminum foil to protect the fossils. But that is the process we use today in the field. What about before all of that was invented? I went back to the source of the information to what ended up being a great tie-in book for
Dragon Teeth, Sternberg's autobiography itself,
The Life of a Fossil Hunter, in which he describes the fossil jacket creation process. Even though Crichton's main character in
Dragon Teeth, William Johnson, was a complete fabrication, many of the people in the book were not, including Charles Sternberg. Here is Sternberg's own account of the situation, when he was indeed out in the field with Cope:
"When we uncovered these bones [from a Monoclonius sphenocerus] we found them very brittle, as they shattered by the uplift of the strata in which they were buried; and we were obliged to devise some means of holding them in place. The only thing we had in camp that could be made into a paste was rice, which we had brought along for food. We boiled quantities of it until it became thick, then, dipping into it flour bags and pieces of cotton cloth and burlap, we used them to strengthen the bones and hold them together. This was the beginning of a long line of experiments, which culminated in the recently adopted method of taking up large fossils by bandaging them with strips of cloth dipped in plaster of Paris, like the bandages in which a modern surgeon encases a broken limb."
Part 2: Nineteenth Chapter - Around the Fire
"Unlike Marsh, Cope was not an open Darwinian, but he appeared to believe in evolution, and certainly in great antiquity. Morton was going to be a preacher, like his father. He asked Cope, 'as a man of science,' how old the world was.
Cope said he had no idea, in the mild way he had when he was concealing something. It was the opposite side of his snapping temper, this almost lazy indifference, this tranquil, calm voice. This mildness overcame Cope whenever the discussion moved into areas that might be considered religious. A devout Quaker (despite his pugilistic temperament), he found it difficult to tread on the religious feelings of others.
Was the world, Morton asked, six thousand years old, as Bishop Ussher had said?
A great many serious and informed people still believed this date, despite Darwin and the fuss that the new scientists who called themselves 'geologists' were making. After all, the trouble with what the scientists said was that they were always saying something different. This year one idea, next year something else. Scientific opinion was ever changing, like the fashions of women's dress, while the firm and fixed date 4004 BC invited the attention of those seeking greater verity.
No, Cope said, he did not think the world was so recent.
How old, then? asked Morton. Six thousand years? Ten thousand years?
No, Cope said, still tranquil.
Then how much older?
A thousand thousand times as old, said Cope, his voice still dreamy.
'Surely you're joking!' Morton exclaimed. 'Four billion years? that is patently absurd.'
'I know of no one who was there at the time,' Cope said mildly.
'But what about the age of the sun?' Morton said, with a smug look.
In 1871, Lord Kelvin, the most eminent physicist of his day, posed a serious objection to Darwin's theory. It had not been answered by Darwin, or anyone else, in subsequent years.
Whatever else one might think of evolutionary theory, it obviously implied a substantial period of time-at least several hundred thousand years-to carry out its effects on earth. At the time of Darwin's publication, the oldest estimates of the age of the earth were around ten thousand years. Darwin himself believed the earth would have to be at least three hundred thousand years old to allow enough time for evolution. The earthly evidence, from the new study of geology, was confusing and contradictory, but it seemed at least conceivable that the earth might be several hundred thousand years old. Lord Kelvin took a different approach to the question. He asked how long the sun had been burning. At this time, the mass of the sun was well established; it was obviously burning with the same processes of combustion as were found on earth; therefore one could estimate the time it would take to consume the mass of the sun in a great fire. Kelvin's answer was that the sun would burn up entirely within twenty thousand years.
...
Corroborating evidence derived from the warmth of the earth. From mine shafts and other drilling, it was known that the earth's temperature increased one degree for every thousand feet of depth. This implied that the core of the earth was still quite hot. But if the earth had really formed hundreds of thousands of years ago, it would have long since become cool. That was a clear implication of the second law of thermodynamics, and there was no disputing it.
There was only one escape from these physical dilemmas, and Cope echoes Darwin in suggesting it, 'Perhaps,' he said, 'we do not know everything about the energy sources of the sun and the earth.'
'You mean there may be a new form of energy, as yet unknown to science?' Morton asked. 'The physicists say that it is impossible, that the rules governing the universe are fully understood by them,'
'Perhaps the physicists are wrong,' Cope said.
'Certainly someone is wrong.'
'That is true,' Cope said evenly.
I had previously given a brief brake down of the historic calculations for the age of the Earth, including Bishop Ussher and Lord Kelvin's contributions on my
Geology Through Literature post on Good Omens. Generally Crichton is correct here but he does have some errors mixed into the text as well. In the 1600's Lord Ussher did indeed determine the age of the Earth to be approximately six thousand years old, being "born" on 4004 BC.
This was the predominant theory of the time. However scientists started to come around to question that age. Specifically, in the late 1700's, James Hutton produced his principle of uniformitarianism which said that everything happening today has happened in the past, and at a similar rate. So, even though Hutton didn't give a specific age of the Earth, he did place a timescale on it, saying that the earth had to be hundred of millions or even billions of years old.
Following Hutton within the 1800's, scientists were all over the place trying to use his theory, along with rates of sedimentation and erosion, to pinpoint a date. As Crichton said above, they really were not able to place an exact date and would frequently come up with widely contradictory dates. Darwin himself did weigh in on the debate. Within
The Origin of Species, Darwin mentioned several time estimates for different periods of the Earth, all of which would insinuate that he thought the Earth was much older then the 300,000 years that Crichton thought he believed in, and it was actually more like 300 million years. From the first edition (1859) of
On the Origin of Species Darwin wrote "So that in all probability a far longer period than 300 million years has elapsed since the latter part of the Secondary period." He goes into much more detail in later versions. In the sixth edition (1872) he wrote:
"Consequently, if the theory be true, it is indisputable that before the lowest Cambrian stratum was deposited long periods elapsed, as long as, or probably far longer than, the whole interval from the Cambrian age to the present day; and that during these vast periods the world swarmed with living creatures. Here we encounter a formidable objection; for it seems doubtful whether the earth, in a fit state for the habitation of living creatures, has lasted long enough. Sir W. Thompson concludes that the consolidation of the crust can hardly have occurred less than twenty or more than four hundred million years ago, but probably not less than ninety-eight or more than two hundred million years. These very wide limits show how doubtful the data are; and other elements may have hereafter to be introduced into the problem. Mr. Croll estimates that about sixty million years have elapsed since the Cambrian period, but this, judging from the small amount of organic change since the commencement of the Glacial epoch, appears a very short time for the many and great mutations of life, which have certainly occurred since the Cambrian formation; and the previous one hundred and forty million years can hardly be considered as sufficient for the development of the varied forms of life which already existed during the Cambrian period. It is, however, probable, as Sir William Thompson insists, that the world at a very early period was subjected to more rapid and violent changes in its physical conditions than those now occurring; and such changes would have tended to induce changes at a corresponding rate in the organisms which then existed."
Here Darwin highlighted the extreme inconsistencies with age dating at the time, which relied heavily on non-specific geological processes such as erosion and deposition.
In the 1860's, Lord Kelvin came into the mix. Lord Kelvin was a predominate expert in thermodynamics at the time. He based the age of the earth on the rate of cooling that the Earth needed to experience based on its size and current temperature. This led Lord Kelvin to estimate an age of the Earth in the range of 20-100 million years, eventually bringing that high number down to a range of 20-40 million years. Kelvin's biggest shortcoming was that he was indeed unaware of a different source of energy in the Earth. Following Lord Kelvin's estimates by about 30 years was the discovery of radioactivity. It was the energy and heat released by radioactivity that has kept the Earth a lot warmer than it normally would have been. This energy was what completely nullified Lord Kelvin's estimates.
Part 2: Twenty-first Chapter - Dinner with Cope and Marsh
"Cope was busy with preparations of his own. His picked through the piles of fossils they had found, selecting a piece here, a piece there, setting them aside.
Johnson asked if he could help, but Cope shook his head. 'This is a job for an expert.'
'You are selecting finds to show Marsh?'
'In a way. I am making a new creature: Dinosaurus marshiensis vulgaris.'
By the end of the day he had assembled from fragments a passable skull, with two horned projections that stuck out laterally from the jaw like curving tusks.
Isaac said it looked like a wild boar, or a warthog.
'Exactly,' Cope said, excited. 'A prehistoric porcine giant. A piglike dinosaur! A pig for a pig!'
Needless to say but there has never been a dinosaur named with the genus of
Dinosaurus. Although there is apparently a
movie.
The name and the description were all entirely made up for the book, and they were even made up in the book.
Part 2: Twenty-fourth Chapter - The Teeth
"'...I want a picture in situ. [said Cope]'
'Of these rocks?' Johnson asked, astonished.
'Rocks? You think these are rocks? They are nothing of the sort.'
'Then what are they?'
'They are teeth!' Cope exclaimed....
'Teeth,' he repeated. 'Dinosaur teeth.'
'But they are enormous! This dinosaur must be of fantastic size'
For a moment the two men silently contemplated just how large such a dinosaur must have been-the jaw needed to hold rows of such large teeth, the thick skull needed to match such a massive jaw, the enormous neck the width of a stout oak to lift and move such a skull and jaw, the gigantic backbone commensurate to the neck, with each vertebra as big around as a wagon wheel, with four staggeringly huge and thick legs to support such a beast. Each tooth implied an enormity of every bone and every joint. An animal that large might even need a long tail to counterweight its neck, in fact.
...
Cope measured the teeth with his steel calipers, scratched some calculations on his sketch pad, and shook his head. 'It doesn't seem possible,' he said, and measured again. And then he stood looking across the expanses of rock, as if expecting to see the giant dinosaur appear before him, shaking the ground with each step. 'If we are making discoveries such as this one,' he said to Johnson, 'it means that we have barely scratched what is possible to learn. You and I are the first men in recorded history to glimpse these teeth. They will change everything we think we know about these animals, and much as I hesitate to say such a thing, man becomes smaller when we realize what remarkable beasts went before us.'
...
'How big do you make it?' Johnson asked. He glanced at the sketch pad, now covered with calculations, some scratched out and done again.
'Seventy-five, possibly one hundred feet long, with a head perhaps thirty feet above the ground.'
And right there he gave it the name, Brontosaurus, 'thundering lizard,' because it must have thundered when it walked. 'But perhaps,' he said, 'I should call it Apatosaurus, or 'unreal lizard.' Because it is hard to believe such a thing ever existed....'
There are several inaccuracies within the section to the point that I don't think any of it can be taken as accurate.
- First off Marsh discovered both Apatosaurus and Brontosaurus, not Cope as is stated in the book.
- The text goes on to state that the animal which these teeth belonged to would be named "Brontosaurus". The problem is that the name Apatosaurus (1877) was used first. Then another animal remarkably similar to Apatosaurus was later named Brontosaurus (1879). They were eventually determined to be the same species, so in science the name used first takes precedence. Hence the long standing problem where when people called a dinosaur a Brontosaurus they should really be calling it an Apatosaurus. This means that the name "Brontosaurus" was not used first, or even come up at the same time.
- On a side note, the fact that Apatosaurus = Brontosaurus has since come under fire, where recent studies have shown that the two original specimens of each species might in fact have been two separate species. This means that Brontosaurus would become a valid name again, however it doesn't take away from the fact that Apatosaurus was named first.
- When discovered both the Apatosaurus and the Brontosaurus didn't have any skulls associated with them. No skulls and no teeth. That made identifying them as separate species initially very difficult, and also led to the confusion between the two species until a head for the initial Brontosaurus was unearthed, much, much later.
- The name "Apatosaurus" also doesn't mean "Unreal lizard", it means "Deceptive Lizard" and was named for the vertebrae that resembled those of mosasaurs.
- Besides the audacity of trying to determine the size of an animal based just on the teeth, the teeth that were eventually discovered for Apatosaurus were initially confused for Diplodocus teeth. And the skull itself for both of these large animals was rather small for an animal of such large size. It is near impossible to determine body size based just on the tooth size if you know practically nothing else about the animal, which they didn't at the time. Modern day analysis can come much close since we have a much larger database of dinosaurs to compare new teeth to.
So the "teeth" of
Dragon Teeth end up being a complete fabrication. It kind of goes along with the rest of the story. In general, I thought it was a fun book, but I was very disappointed when I found out that it was all made up. Crichton essentially set out to compress the Bone Wars into one year and place his protagonist into the situation. But, all in all, I'd say that it was a fun read.
You can find all of my Geology Through Literature posts here at my website!
References
https://en.wikipedia.org/wiki/Othniel_Charles_Marsh
https://www.history.com/news/the-cardiff-giant-fools-the-nation-145-years-ago
http://www.iowadnr.gov/portals/idnr/uploads/geology/FortDodgeGypsum.pdf
https://www.nps.gov/articles/pompeys-pillar-national-monument.htm
https://www.blm.gov/learn/kids/pompeys-pillar
http://npshistory.com/publications/paleontology/springfield-dinosaurs.pdf